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Abstract. A symmetry classification of the superfluid 3He phases is presented that is based 
on group representation theory. Using this classification scheme, an analysis of the superfluid 
cores of 3He-B vortices is given. 

1. Introduction 

A characteristic feature of superfluids is the broken U(1)' gauge invariance. In the case 
of liquid 3He the dynamics has an additional SO(3)' X S0(3)L symmetry, where S refers 
to spin rotations and L to ordinary space rotations, which is also broken in the superfluid 
state. (We consider the S- and L-rotations as independent symmetries, because we 
neglect the small dipole spin-orbit interaction.) The description of superfluid 3He 
involves an order parameter A,,, a, i = 1, 2, 3, with a the spin index and i the orbital 
index [l]. This (complex) object transformsnon-trivially under U(1)' and as the (ZS, 3_") 
representation under SO(3)' X S0(3)L, i.e. it transforms as a vector under both factors 
[l] .  For our purposes it is more convenient to work in a spherical basis where the (ZS, 3') 
has (complex) entries a m s m L ,  with ms,L the weights (mS,L = 0, k l ) .  The different super- 
fluid phases are now characterised by different constant values of the order parameter 
a,,,, . Alternatively, we may characterise the phase by the residual symmetry H C G 
which leaves the corresponding value of amsmL invariant and where G is the full symmetry 
PI 9 

G = SO(3)' x S0(3)L x U(1)'. (1 * 1) 
The transformation properties of the relevant order parameter follow from the assumed 
pairing mechanism in the underlying microscopic theory. All phases that can possibly 
be realised, as well as many of the physical properties of these phases, are a direct 
consequence of the representation content of the order parameter. 

There are basically two approaches for determining the possible phases. The first 
consists of explicitly minimising the energy functional of the Ginzburg-Landau theory. 
An extensive analysis of this kind has been given in [3]. A second approach is based on 
group theory, like the one followed by Bruder and Vollhardt [ 2 ] .  They systematically 
classified all subgroups H of the full symmetry group G, and subsequently determine 
whether a breaking of G is possible with a particular choice of the order parameter. 
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In this paper we again rely on group theory, but in contrast with the work in [2], we 
directly start from the representation theory of the (3', Z L )  representation, which in fact 
leads to equivalent results in a much more direct and simple way. Section 2 deals with 
the continuous residual symmetries and § 3 with the discrete ones. As this paper basically 
does not contain any new results we think its interest resides in the simple method by 
which we were able to derive the known results. 

The method we employ is also very useful in determining the symmetry-breaking 
patterns that occur in topological defects, and in studying the superfluid 3He phases in 
an external magnetic field of increasing strength. As an illustration, we discuss the 
superfluid cores of 3He-B vortices in 0 4. In recent years vortex phenomena in superfluid 
3He have received considerable attention in the literature (for a review see [4])- 
especially since 1982 when some surprising NMR data on rotating superfluid 3He-B were 
reported [5]. 

2. Continuous symmetries 

In this section we enumerate all the superfluid 3He phases with a continuous residual 
symmetry. The largest subgroup to which the symmetry group (1.1) can be broken down 
is the diagonal subgroup S 0 ( 3 ) J  of SO(3)' X S 0 ( 3 ) L ,  where J = S + L .  The branching 
rule is 

G 3 S0(3)-' (3S, 3 L )  = 5J + 3J + I J .  (2.1) 

The last term in (2.1) indicates that the order parameter of this so-called B phase is a 
singlet under S 0 ( 3 ) J ,  i.e. the order parameter is indeed invariant under the residual 
symmetry transformations S 0 ( 3 ) J .  The diagonal subgroup is the only SO(3) group to 
which the symmetry group of liquid 3He can be broken down. This may be understood 
as follows. Let rS, + sL,, ,U = 1 , 2 ,  3, be the generators of S 0 ( 3 ) H ,  where S and L are 
the generators of S 0 ( 3 ) s , L ,  respectively. The generators of the residual symmetry group 
should satisfy the SO(3) algebra; hence 

[rS,  + sL , ,  rSA + s L A ]  = iEPA,(rS, + sL,)  

r 2 S ,  + s 2 L ,  = r S ,  + sL,. 

(2 * 2) 

(2.3) 

or 

The solutions of this equation are r = s = 1, which corresponds to the diagonal subgroup 
S 0 ( 3 ) J ,  r = 0, s = 1 and r = 1, s = 0. The last two solutions would imply that either 
S0(3)s or SO(3) remains unbroken, which is impossible for a superfluid in the (ZS, 3L) 
representation. 

To determine all possible continuous Abelian subgroups it suffices to restrict our- 
selves to rotations around the third axes in spin and orbit space, denoted by S2 s ( L ) ,  In 
our basis the tensor component amSmL transforms with aphase factor only. If we consider 
a transformation s 2 ~ ( O s ) Q ~ ( O L ) Q " ( c p ) ,  where Q* refers to a U(1)" gauge trans- 
formation, then 

a m s m L  + ah,,, = ~ x P [ ~ ( O S ~ S  + O L ~ L  + ~ ) ) l a m S m L .  (2.4) 

Note that in general for cases with non-zero weights one needs the gauge transformation 
52" to annihilate overall phase factors, in order for the order parameter to be invariant 
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under the rotations around the third axes. By inspection we now immediately write 
down table 1 which exhausts all possibilities for U( l )  subgroups and products thereof. 
Thenotationissuchthat, for example, theresidualsymmetrygroupU(1)2S+L-adenotes 
invariance of the state under transformations (2.4) with 8, = 2a, OL = a and q = -a. 
Phases with two residual U( l )  factors are found along the diagonal and, hence, have 
only one non-zero entry (which may be taken equal to unity). For example, the so-called 
AI phasewithresidualsymmetryU(l)S-a X U(l)L-’ischaracterised by a,, # 0. Phases 
with a single residual U( l )  factor, on the other hand, have two or three non-zero entries. 
For example, the state with the residual symmetry group U(1)2s+L-a, which is the 
common U( l )  factor in U(l)’-” X U(l)L+’ # 0) and U(l)s x U(l)L-a (aol # 0), 
is described by a,-,, aol # 0. The so-called oblate or B2 phase with residual symmetry 

Tablet. S~perf lu id~Hephasesa i th  acontinuousAbelianresidua1 symmetry. The parameters 
appearing in the matrices are non-zero; they are further arbitrary complex constants. 

Residual symmetry Residual symmetry 
group a m . w L  Name group a m s m L  Name 
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group U(l)-’ has a l - l ,  aoo, a-ll # 0.  This group is the common U(l) factor in 
U(l)’-@ X U(l)L+@ ( a l - l  # 0), U(1)’ X U(l)L (aoo # 0) and U(l)’+@ x U(l)L-@ 
(a- l l  # 0). Missing entries in table 1 correspond to symmetry groups that differ only in 
sign from the ones that are depicted, in the same way as U(l)’-@ x U(l)Lf@ differs 
from U(l)’-” X U(l)L-@ by one minus sign. In table 2 a summary is given. The states 
with only one coefficient (which is taken equal to one) are called inert states [6]. The 
other ones for which amsmL explicitly depends on the physical parameters are called non- 
inert states. Note that upon interchanging the spin and orbital parts of a state the order 
parameter amsmL is transformed into the transpose matrix with elements umLms. 

The symmetry breaking in the superfluid phases with non-zero weights as well as in 
the B phase is quite intricate. The non-triviality stems from the fact that the residual 
symmetries comprise transformations of different groups. As elucidated by Liu [7], the 
result of this is that the system is unable to distinguish between the different symmetry 
transformations which in turn give rise to some rather surprising physical phenomena 
[8,9]. 

3. Discrete symmetries 

We will now investigate the breaking down of the symmetry group (1.1) into discrete 
subgroups. For this we need the well known discrete subgroups of U(l) and SO(3) [lo]. 
For U(l) they are given by the cyclic groups C, in which the only symmetry consists of 
a single n-fold axis of symmetry. This group is of order y1. For SO(3) the discrete 
subgroups are, besides C,, the dihedral groups D, of order 2n,  which have n twofold 
axes perpendicular to the principal C, axis; the tetrahedral group T of order 12, the 
orthohedral group 0 of order 24, and the icosahedral group Y of order 60. 

First, we explain that only the subgroups C i ,  D$, C i  and D i may figure as residual 
symmetry groups of superfluid 3He. Consider a common rotation around the third axis 
in spin and orbit space: G? $ (a)Q 4 (a) ,  

amsmL + a,!,,smL = elwm/ a msmL 

amJ = 0 (mod 2n). 

(3.1) 

(3.2) 

where mJ ms + mL = 0 ,  +1, +2. A state is invariant under these rotations if 

This condition restricts the allowed values of the rotation angle a when m, # 0. (For the 
state with mJ = 0, i.e. u l -  1, aoo, a-ll  f 0, LY can take any value 0 s a < 2 n .  In fact, this 
is the oblate state we obtained in § 2.) The smallest (positive) value we find here is LY = 
n. The rotation over n need not be around the third axis, but may equally well be around 
the first axis: G?f(n)G?f(n), 

(3.3) 

(3.4) 

- - ampL + a,!,,smL a-mS-mL 

amsmL + ah,ymL = (-l)mJa-mS-mL* 

or around the second one: G?$(n)G?&(n), 

As can easily be checked, equation (3.1) has only two solutions, namely CL and C:. 
Also the set (3.1), (3.3) and (3.4) yields only two solutions, namely D i  and D$. In this 
way we arrive at table 3. 

Most of the other states with discrete unbroken symmetry involve so-called colour 
groups [ 111 which are the discrete analogues of the continuous subgroups corresponding 
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Table 3. Largest subgroups of SO(3) in the 3 and ?representations. 

SO(3) 1 D, C, Y 0 T D4 D, DZ C4 C, Cz 

- I *  $ 

3 
5 * * 

to non-zero weights encountered in § 2. The value of the order parameter of a state 
belonging to this non-trivial class is not invariant under certain discrete spin or/and 
orbital transformations, but is multiplied by a phase factor. Like in the continuous case, 
these factors must be compensated for by elements of U(1)’. That is, the residual 
symmetry groups of this class contain combined elements made up of elements of 
subgroups of S0(3)s,L-J, U(1)2SfL or U(1)s+2L and of U(l)@. The construction of these 
extended groups [12] closely parallels the construction of magnetic point groups [13]. It 
proceeds in finding all the point groups that have, besides the trivial group I, the group 
C; , D $ or C z-L,J as invariant subgroup, In the case of superfluid 3He only these invariant 
subgroups have to be considered. This follows from the observation that upon neglecting 
the compensating U(l)@ factors, one is dealing with a S0(3)s X S0(3)L symmetry group 
in the (3’, lL) representation to which table 3 applies. Note that only the continuous 
group SO(3) has D, as invariant subgroup. Next, we must find among the point groups 
thus obtained, those groups G’ for which the 3_or Zrepresentation contains a non-trivial 
one-dimensional representation with the property that the group elements that are 
represented by 1 form the invariant subgroup Fthat is being considered. In that case the 
group elements that are not represented by 1 form the factor group G’/F. They may be 
multiplied by the elements of the U(l)@ subgroup, which is isomorphic to the factor 
group, such that the combined elements are again represented by 1. In this way, the 
one-dimensional representation becomes the singlet representation, and hence the 
corresponding order parameter is invariant under the extended group. These colour 
groups are denoted by G’(F) .  

We now list all possible colour groups that may be realised in superfluid 3He as 
discrete residual symmetry groups. Observe that since we now have the possibility of 
compensating for overall phase factors, the smallest value of (Y (equation (3.1)) is half 
the value a = ?G that we found when no compensating factors were present. Conse- 
quently, the groups C,, D, with 5 S n < m, and Y need not be considered. Those phases 
that may be obtained from others by simply interchanging the spin and orbital parts or 
by altering the signs of the weights ms and mL are omitted for brevity. We adopt the 
notation of [13] throughout the paper. 

We start with the group C2. The branching rule is 

(3.5) 5 = 3A + 2B. SO(3) 3 Cz - 3 = A + 2 B  - 

We recognise from the character table [13] that in the B representation, which is 
contained in both the 3 and the representation, when the element c2 is multiplied 
by the phase factor z 2  from the subgroup CF  of U(1)@, z ,  := exp(i2n/n), the com- 
bined element is represented by the identity. Thus we find the extended groups Cs(I), 
C:(I) x U(l )L ,  Ci(1) x U(l)L-@, and C;(I) which is the symmetry group of the so- 
called axiplanar phase or b-phase. There is one more residual symmetry group based on 
C2, namely the direct product Ci(1) x Ci(1).  

For the group C3 the branching rule is: 

SO(3) 3 C3 - 3 = A + E  - 5 = A + 2E. (3.6) 
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In the E representation of this group one must compensate with factors z3  from the 
subgroup CF  of U(1)'. We find the groups Ci(1) and Ci(1). However, the order 
parameter belonging to the residual symmetry group CS(1) turns out to be the same as 
for U(l>'-" of which it is a subgroup. Consequently, this subgroup does not lead to a 
new state. It is to be remarked that the group C$'2"(I), which can also be constructed 
here, may alternatively be denoted by CS-"(I), and belongs to the class we omit for 
brevity. 

Next, we consider the group C4: 

SO(3) 3 C4 - 3 = A + E  - 5 = A  + 2B + E .  (3.7) 

The E representation gives rise to the extended groups Ci(I) ,  Ci(1) and Ci'2"(I). The 
first two do not lead to new states as the order parameters are the same as for the 
continuous residual symmetry groups U(l)s-" and U(l)J-', respectively. From the B 
representation one obtains the group C",C$). 

The branching rule for the group D2  is 

SO(3) 3 D2 - 3 = B1 + B, + B3 - 5 = 2 A I  +B1  + B 2 + B 3 .  (3.8) 

Here, we only find the residual symmetry group D$(C:). This colour group may be 
based on either the B1, the B2 or the B3 representation. The corresponding order 
parameters differ slightly in form, and will be labelled 1, 2 or 3. Breaking down to the 
group D$(C$)  cannot be realised in superfluid 3He. The reason is, as we explained 
earlier in this section, that if we neglect the compensating U(1)' factors we have a 
SO(3)' x SO(3)" theory, and the extended group D$(C$) collapses to C$.  But in the 
(3s, 3") representation C$  is not alargest subgroup to which the symmetry can be broken 
down. 

The A, representation of the group D3 

SO(3) 3 D3 - 3 = A , + E  - 5 = A l  + 2 E  (3 * 9) 

gives rise to the colour group D$(Ci) .  The corresponding order parameter, however, 
describes a state with the larger residual symmetry DL(CL). This state is called the 
planar or 2D phase. 

For the group D 4  the branching rule is 

SO(3) 3 D4 - 3 = A , + E  - 5 = Ai + B1 + B2 + E. (3.10) 

Only the colour group D<(D;),  which may be constructed from the B1 or the B, 
representation of D4, leads to new states. The two order parameters have a sign dif- 
ference and will be labelled 1 or 2. 

Next, we consider the group T. The branching rule is 

SO(3) 3 T - 3 = T  5 = E + T .  (3.11) 

We find that breaking down to the extended group TJ(D:), which is based on the E 
representation, might happen in superfluid 3He. The corresponding phase is called the 
a-phase. Finally, none of the representations contained in the and representations 
of the group 0 is one-dimensional. Hence, no colour groups that may act as residual 
symmetry groups in superfluid 3He can be constructed from 0. This completes the list 
of superfluid phases in which the symmetry group is broken down to a generalised 
magnetic point group where elements of subgroups of U(1)' figure as compensating 
factors. We have thus obtained all previously found superfluid 3He phases except the 
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Table 4. Superfluid 3He phases with a discrete residual symmetry group. The coefficients 
appearing in the matrices are non-zero; they are further arbitrary complex constants. 

Residual symmetry Residual symmetry 
group a m s m r  Name group amsmL Name 

Planar, 2~ 

(Y 

bipolar phase [ 6 ] .  The symmetry group of this phase involves a generalisation of the 
colour groups [ 141 which we will not discuss. 

Given the residual symmetry groups, the explicit form of the order parameter in the 
different states may easily be constructed using (2.4), (3.3) and (3.4) where in the right- 
hand sides of the last two equations additional U(1)@ phase factors may be included. 
Table 4 summarises our analysis. We see three inert states appearing here, namely the 
planar, the a- and the D;(Di) phases. 

4. Superfluid core states of 'He-B vortices 

In this section we study the ordered phases that exist in the core of superfluid 3He-B 
vortices [4]. The core of these vortices is so large that it may be considered as a 
macroscopic system that may undergo phase transitions. In a classic superfluid like He 
11, the vortex core of the normal liquid must always exist. This may be understood as 
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follows. The superfluid momentum p s  in a classic superfluid is given by 

Ps = Vq (4.1) 
where q is the U(1)' Goldstone mode and, thus, the superflow is a potential flow. For 
a vortex with non-zero winding number n,  i.e. 

f Vq * d l  = n f 0 
23t 

where the line integral is taken over one circuit around the vortex, y? changes by a fixed 
amount around the contour. Consequently, if one shrinks this contour down to zero 
area one eventually encounters a region in which the field Vy?, and hence the kinetic 
energy, would diverge. In order to avoid this real-space singularity in the vortex core 
the U( 1)' symmetry is restored, and the liquid is normal there. (Note that the potential- 
flow character of the superfluid implies that the vorticity is concentrated in the vortex 
core.) In contrast, 3He-B possesses vortices that display no destruction of superfluidity 
in their cores. This comes about because of the non-trivial internal structure of the 
superfluid3He phases. As a result the simple argument just given for the classic superfluid 
is not always valid in that the superfluid momentum can have a non-potential character. 
Moreover, some superfluid phases have quantum numbers that are compatible with 
those of certain vortices in 3He-B. As first observed by Volovik and Mineev [ 151, vortices 
with a superfluid core can escape the vortex singularity in real space by transforming it 
into momentum space. Consequently, the order parameter vanishes only for certain 
momenta rather than for all momenta, as we have seen to be the case with real-space 
singularities. This observation also illustrates that the internal structure of a vortex-core 
phase must be non-trivial, since it has to exhibit these momentum-space singularities. 
In addition, it shows that real-space topology becomes coupled with the topology of the 
momentum space [4]. The theoretical methods employed up to now to study these 
vortices are based on numerically solving the Ginzburg-Landau equations. We will take 
a different route, one that is based on representation theory and that fits well into the 
scheme we developed earlier in this paper. 

The key point in understanding which superfluid phases may figure as inner vortex- 
core phases is the quantum numbers of the state. In 3He-B, as in a classical superfluid, the 
winding number of an axisymmetric vortex coincides with the total angular momentum 
quantum number of the vortex [4]. Hence, the topological charge is a good quantum 
number for these vortices and the quantum number mJ of the inner vortex-core phase 
must have this value. From this observation we infer that axisymmetric vortices with 
winding number n z= 3 always have a normal core, since there is no superfluid 3He phase 
that has a value mJ * 3 (see 0 2). Furthermore, by recalling that the state with mJ = 2 is 
the AI phase, we conclude that this state may figure as the inner vortex-core state of a 
doubly quantised axisymmetric vortex ( n  = 2). It also follows that the superfluid inner 
core of a singly quantised axisymmetric vortex (n  = 1) consists of the &-phase (mJ = 1). 
Salomaa and Volovik [4] in their numerical analysis found this same state, but they 
erroneously identified it as a mixture of the p-phase and A phase. This is due to the facts 
that (i) the order parameter of the &-phase is a linear combination of the order parameters 
of the a-phase and A phase: 

a?)smr. = ragi,, + sa,,,, (A) (4.3) 

where r and s are complex parameters, and (ii) the momentum-space topology of the A 
phase is identical to that of the €-phase. Finally, it is amusing to note that axisymmetric 
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vortices belonging to the trivial class (n = 0) may possess a superfluid jHe-B2 core, since 
this state has quantum number m, = 0. 

According to Salomaa and Volovik [4] there is experimental evidence for the exist- 
ence of two different vortex-core states in superfluid 'He-B separated by a first-order 
phase transition. As a mechanism for the vortex-core transition they suggested the 
breaking of axisymmetry [4]. They surmise that the first-order nature of the transition 
follows from the change in the (real-space) topology between the two vortex cores. The 
two vortices involved are the singly quantised axisymmetric and C2-symmetric v-vortex 
[4]. The former belongs to the class with the E inner vortex-core phase we discussed 
above. In the latter the axisymmetry is broken down to C", i.e. only a rotation by the 
angle n about the vortex axis is still a symmetry operation. Unlike the axisymmetric one, 
this C2-symmetric vortex cannot possess a superfluid E inner core, as this phase has the 
full U(l), symmetry (up to phase transformations). Rather, it will possess a superfluid 
axiplanar core. In this state the symmetry group U(l),-" of the €-phase is broken down 
to the subgroup C"(1). Thus the symmetry of the inner core state, C $  (up to a phase 
transformation), is again compatible with the symmetry of the vortex state. This non- 
axisymmetric solution was first obtained numerically by Thuneberg [ 161. 

The singly and doubly quantised vortices will have a superfluid core, unless additional 
discrete symmetries of the vortices are incompatible with the symmetry of the core state. 
This is the case for singly quantised axisymmetricvortices with space parity (P) symmetry. 
As shown in [4], if the P operation is a symmetry operation the vortex solutions split into 
two disjoint classes, one with m, even and the other with mJ odd. From this observation 
we infer that the singly quantised axisymmetric vortex with P symmetry cannot have a 
superfluid &-core, since this phase and superfluid 3He-B belong to a different class. For 
the doubly quantised vortices and the vortices belonging to the trivial class, P symmetry 
causes no problem, because the A ,  and B2 phases belong to the same class as 3He-B. We 
hope to return to these points in a later paper. 
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